Математическое программирование - Definition. Was ist Математическое программирование
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Математическое программирование - definition

ВЫБОР НАИЛУЧШЕГО РЕШЕНИЯ; ЗАДАЧА НАХОЖДЕНИЯ ЭКСТРЕМУМА ЦЕЛЕВОЙ ФУНКЦИИ В НЕКОТОРОЙ ОБЛАСТИ КОНЕЧНОМЕРНОГО ВЕКТОРА
Математическое программирование; Теория оптимизации; Программирование математическое; Задача оптимизации; Методы оптимизации; Задача условной оптимизации; Задача безусловной оптимизации; Математическая оптимизация
  • максимум]] от (''x, y, z'') = (0, 0, 4) обозначен синей точкой
  • Функции оптимизации]]. Симплексные вершины упорядочиваются по их значению, при этом 1 имеет наименьшее (лучшее) значение.

МАТЕМАТИЧЕСКОЕ ПРОГРАММИРОВАНИЕ         
раздел математики, посвященный теории и методам решения задач о нахождении экстремумов функций на множествах, определяемых некоторыми ограничениями (равенствами или неравенствами). Если изучаемая функция линейна (1-й степени) и задана на множестве, заданном линейными равенствами и неравенствами, то соответствующий раздел математического программирования называется линейным программированием. Математическое программирование называется также оптимальным программированием. Следует отличать от программирования на ЭВМ.
Математическое программирование         

математическая дисциплина, посвященная теории и методам решения задач о нахождении экстремумов функций на множествах, определяемых линейными и нелинейными ограничениями (равенствами и неравенствами).

М. п. - раздел науки об исследовании операций (см. Операций исследование), охватывающий широкий класс задач управления, математическими моделями которых являются конечномерные экстремальные задачи. Задачи М. п. находят применение в различных областях человеческой деятельности, где необходим выбор одного из возможных образов действий, например, при решении многочисленных проблем управления и планирования производственных процессов, в задачах проектирования и перспективного планирования.

Наименование "М. п." связано с тем, что целью решения задач является выбор программы действий.

Математическая формулировка задачи М. п.: минимизировать скалярную функцию φ(x) векторного аргумента х на множестве

X = {x: gi(x) ≥ 0, hi(x) = 0, I = 1, 2, ..., k},

где gi(x) и hi(x) - также скалярные функции; функцию φ(x) называют целевой функцией, или функцией цели, множество X - допустимым множеством, решение х* задачи М. п. - оптимальной точкой (вектором).

В М. п. принято выделять следующие разделы. Линейное программирование: целевая функция φ(x) и ограничения gi(x) и hi (х) линейны; выпуклое программирование: целевая функция и допустимое множество выпуклы; квадратичное программирование: целевая функция квадратична и выпукла, допустимое множество определяется линейными равенствами и неравенствами; дискретное программирование: решение ищется лишь в дискретных, например целочисленных, точках множества X; стохастическое программирование: в отличие от детерминированных задач, здесь входная информация носит элементы неопределённости; например, в стохастических задачах о минимизации линейной функции

при линейных ограничениях

, i = 1, 2, ..., m,

либо все величины cj, aij, bi, либо часть из них случайны.

Задачи перечисленных разделов обладают общим свойством: всякая точка локального минимума является оптимальной точкой. Несколько в стороне находятся так называемые многоэкстремальные задачи - задачи, для которых указанное свойство не выполняется.

В основе теории выпуклого программирования и, в частности, линейного и квадратичного, лежит теорема Куна - Таккера о необходимых и достаточных условиях существования оптимальной точки x*: для того чтобы точка х* была оптимальной, то есть

,

X = {x: gi(x) ≥ 0, i = 1, 2, ..., k},

необходимо и достаточно, чтобы существовала такая точка у* = (у*1, у*2, ..., у*k), чтобы пара точек х*, у* образовывала седло функции Лагранжа

Последнее означает, что

L(x*, y) ≤ L(x*, y*) ≤ L(x, у*)

для любых х и всех у ≥ 0. Если ограничения gi(x) нелинейны, то теорема справедлива при некоторых дополнительных предположениях о допустимом множестве.

Если функции φ(x) и gi(x) дифференцируемы, то следующие соотношения определяют седловую точку

, j = 1, 2, ..., n;

; ; i = 1, 2, ..., k;

, yi . 0, i = 1, 2, ..., k.

Таким образом, задача выпуклого программирования сводится к решению системы уравнений и неравенств.

На основе теоремы Куна - Таккера разработаны различные итерационные методы минимизации, сводящиеся к поиску седловой точки функции Лагранжа.

В М. п. одно из главных мест принадлежит вычислительным методам решения экстремальных задач. Широким классом таких методов являются методы проектирования. Идея этих методов состоит в следующем. В точке xkX выбирается направление спуска sk, то есть одно из направлений, по которому функция φ(x) убывает, и вычисляется xk+1 = p(xk + αksk), где p(xk + αksk) означает проекцию точки xk + αksk на множество X:

,

число αk > 0 выбирается при этом так, чтобы φ(xk +1) < φ(xk). Существуют различные варианты методов проектирования. Наиболее распространённым из них является метод проекции градиента, когда sk = -grad φ(xk). В М. п. доказано, что при определённых условиях на целевую функцию и допустимое множество, последовательность {хk}, построенная методом проекции градиента, такова, что стремится к нулю со скоростью геометрической прогрессии.

Характерной особенностью вычислительной стороны методов решений задач М. п. является то, что применение этих методов неразрывно связано с использованием электронных вычислительных машин, в первую очередь потому, что задачи М. п., связанные с ситуациями управления реальными системами, являются задачами большого объёма, недоступными для ручного счёта.

Важным направлением исследования в М. п. являются проблемы устойчивости. Здесь существ. значение имеет изучение класса устойчивых задач - задач, для которых малые возмущения (погрешности) в исходной информации влекут за собой малые возмущения и в решении. В случае неустойчивых задач большая роль отводится процедуре аппроксимации неустойчивой задачи последовательностью устойчивых задач - так называемому процессу регуляризации.

М. п. как наука сформировалось в 50-70-х годах 20 века. Это обусловлено главным образом развитием электронных вычислительных машин, а следовательно, с возможностью проводить математическую обработку больших потоков информации, и на этой основе решать задачи управления и планирования, где применение математических методов связано в первую очередь с построением математических моделей и соответствующих им экстремальных задач, в том числе задач М. п.

Лит.: Зуховицкий С. И., Авдеева Л. И., Линейное и выпуклое программирование, 2 изд., М., 1967; Хедли Дж., Нелинейное и динамическое программирование, перевод с английского, М., 1967.

В. Г. Карманов.

Программирование математическое         

математическая дисциплина, посвящённая решению экстремальных задач определённого типа. См. Математическое программирование.

Wikipedia

Оптимизация (математика)

Оптимизация (в математике, информатике и исследовании операций) — это задача нахождения экстремума (минимума или максимума) целевой функции в некоторой области конечномерного векторного пространства, ограниченной набором линейных и/или нелинейных равенств и/или неравенств.

Теорию и методы решения задачи оптимизации изучает математическое программирование.

Математическое программирование — это область математики, разрабатывающая теорию, численные методы решения многомерных задач оптимизации с ограничениями.

Was ist МАТЕМАТИЧЕСКОЕ ПРОГРАММИРОВАНИЕ - Definition